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ABSTRACT

In multiple sclerosis (MS) research, burden of disease and
treatments efficacy are mainly evaluated with lesion load and
atrophy. The former being poorly correlated with patient’s
handicap, it is of interest to evaluate accurately the latter. A
lot of methods to measure the brain atrophy are available in
the literature. The brain parenchymal fraction (BPF) is one of
these methods. It needs a precise segmentation of the brain
and of the Cerebro-Spinal Fluid. However, artefacts like par-
tial volume effects (PVE) can impair this classification. Ac-
cording to some articles, the BPF may also be less precise in
longitudinal studies. To address these points, this article pro-
poses a new method to evaluate the BPF which is based on
an Expectation-Minimization framework taking into consid-
eration the PVE. Modifications of the workflow are also pro-
posed to improve its reliability in longitudinal study. Experi-
ments have been conducted on simulated pathological images
that validate the different measures.

Index Terms— Biomedical Image Processing, Magnetic
Resonance Imaging, Multiple Sclerosis, Atrophy

1. INTRODUCTION

According to the modified McDonald criteria [1], number of
MRI lesion and their location evaluations are mandatory to di-
agnose Multiple Sclerosis (MS). Lesions load measurement is
also used in follow-up studies and pharmaceutical research as
surrogate markers. Except for clinically isolated syndromes,
clinical studies have shown that T2 lesions load is poorly cor-
related with patient’s handicap [2]. In consequence, other ap-
proaches like global atrophy measurement are studied.
Different techniques to quantify brain atrophy in MS are

available [3]. One currently used method is the evaluation
of the brain parenchymal fraction (BPF) [4]. This method
required a precise segmentation of the cerebro-spinal fluid
(CSF) compartment or of the brain (gray matter (GM), white
matter (WM) and lesions). However, some voxels can contain
a mixture of two classes (e.g. CSF and GM) because of im-
age resolution: this Partial Volume Effect (PVE) may impair
greatly the classification and subsequently the atrophy mea-
surement. For example, sulci introduce a lot of GM/CSF PVE

and this is one of the main problems that should be taken into
consideration for obtaining a reliable CSF volume evaluation.
The BPF evaluation presents also other difficulties like

variation of the segmentation results caused by the inter- and
intra-image inhomogeneities or the skull-stripping step. The
BPF seems more appropriate in group studies (e.g. MS pa-
tients vs. healthy controls) than in longitudinal studies [3],
where a method measuring the changes (as SIENA1 [5], that
uses the local shifts in brain edges to evaluate the percentage
brain volume change between two instants) should be pref-
ered.
To improve the robustness of the atrophy measurement

result and to address the PVE in CSF volume evaluation, we
propose here a novel method to evaluate the BPF. First the
segmentation algorithm is presented and is validated with
simulated data for which the ground truth is available. Then
we propose a method to improve the robustness of the mea-
surement in longitudinal study and we compare our method
with SIENA method. The remainder of this article is orga-
nized as follows: in Section 2, we describe the method work-
flow; sections 3 validates the different steps of the method;
perspectives are discussed in Section 4.

2. METHOD

The proposed atrophy measurement method is divided in dif-
ferent steps. The different MRI sequences are preprocessed.
Then, a multi channel ExpectationMaximization (EM) classi-
fication method is applied. From this classification, different
segmentations are generated. The computation of these seg-
mentations’ volumes allows to evaluate atrophy.

2.1. Image normalization

When diagnosing MS, three MRI sequences are classically
acquired: T1, T2 and Proton Density (PD) weighted images.
T2 and PD are intrinsically coregistered but this is not the
case of T1. As T1 has a higher resolution than T2 and PD, we
register T1 on T2 [6] to limit the partial volume effect caused
by the resampling.

1http://www.fmrib.ox.ac.uk/fsl/
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MR images can also suffer from bias [7]. We estimate
and correct it with the Expectation/Conditional Maximization
algorithm proposed in [8].

2.2. Skull-stripping

Classification step is sensitive to a preliminary step, called
skull stripping, which aims at isolating the brain in the im-
age. Indeed, if this step is too restrictive, voxels belonging to
the brain may be discarded, or conversely if it is too permis-
sive, part of the meninges may be retained and subsequently
misclassified. Different automatic skull stripping methods are
available in the literature. As detailed in [9], we use a combi-
nation of Dugas et al. method [10], BET [11] and 3dIntracra-
nial [12] to strip the skull.

2.3. EM classification method

The EM framework is currently used to classify brain MRI
voxels. To take into consideration the different artefacts
which are present in MS patients’ brain MRIs, we decided to
classify voxels into ten classes: WM, GM, CSF, six GM/CSF
PVE classes (with different proportions), and an outlier class,
that will contain vessels and some MS lesions [10]. The
probability density function (PDF) of each class is modelled
by Gaussians, μ and σ denoting respectively the mean and
standard deviation. Our PVE model approximates the in-
tensity of a voxel which contains a proportion α of tissue x
with the intensity Ix and a proportion (1 − α) of tissue y by
IPV E = α∗Ix +(1−α)∗Iy . PVE classes’ PDF then follows
a Gaussian PDF with a mean of (αμx + (1 − α)μy) and a
standard deviation of

√
α2σx + (1− α)2σy .

Following an initialization thanks to an affine registration
of the MNI probabilistic atlas [13], our EM framework is then
composed of three steps which are iterated:

• the Expectation step which consists of labelization of
all classes (including PVE classes),

• the Maximization step which consists of estimation of
the CSF, GM, WM, Outliers Gaussians parameters by
maximizing the likelihood of the whole image,

• the computation of PVE classes’ parameters.
After the convergence of the algorithm, the final segmen-

tations are obtained by classifying each voxel to the most
probable class. MS lesions are classified mainly in the GM
or outlier classes.

2.4. Volume and BPF computation

To consider the PVE in the volume computation, we generate
CSF and brain repartition maps. These maps are not proba-
bilistic segmentations of a compartment but give the propor-
tion of the considered class (or compartment) in each voxel.
CSF and brain repartition maps (RM(CSF ), RM(B)) are ob-
tained by equations 1 and 2 where SEG(PV Eα) represents

the segmentation of the PVE class with the proportion α of
GM.

RM(CSF ) =
6∑

i=1

7− i

7
× SEGPV Ei + SEGCSF (1)

RM(B) =
6∑

i=1

i

7
×SEGPV Ei + SEGGM +SEGWM (2)

CSF and brain volumes are then obtained by the addition
of all the voxel values of the considered repartition map, mul-
tiplied by the voxel volume, and yield the BPF.

BPF = 100× Brain Volume
Brain Volume + CSF Volume

(3)

2.5. Atrophy computation

The BPF allows to compare different groups of population
(e.g. MS patients vs. healthy controls). If acquisitions at
different timepoints are available, the atrophy is given by
the difference of successive BPF. However some part of the
workflow process has to be changed. All the images are
co-registered on the T2 sequence of the first timepoint. The
intensities of images of the same sequence are equalized.
The skull-stripped mask of the first timepoint is used for the
following ones. In the EM classification, the class parame-
ters are computed from the images of all timepoints. Then
the obtained parameters are used to give the corresponding
segmentations at each timepoint. Since outliers are not con-
sidered in BPF, this may bias the atrophy measure: to handle
this, we consider the union of all outliers detected in each
timepoint as outliers for all the timepoints.

3. VALIDATION

It is not realistic to validate the segmentation of PVE classes,
since their PDF have a significant overlap. In consequence, an
expert has first realized a qualitative validation by visual in-
spection of the results on real MRI but no significant error has
been identified. Secondly, we realize a quantitative evaluation
of the obtained segmentations on simulated data.

3.1. Segmentation comparison criteria

The first step of a validation is to identify comparison crite-
ria. The classification method gives GM and CSF repartition
maps but not binary segmentations. To compare these maps,
we use a generalized version of the Similarity Index (SI), of
the sensitivity (SEN) and the specificity (SPE) [14]. These
criteria are given in Table 1 for a segmentation (Seg) with a
reference image (Ref). Ref(i) and Seg(i) represents the in-
tensity of the voxel i in the corresponding image. The gen-
eralized criteria give the same results with the conventional
criteria on binary images. Moreover their values remain be-
tween 0 and 1.
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Table 1. Segmentation comparison criteria
Criteria Conventional criteria Generalized criteria
Similarity
Index
(SI)

2Card(Ref×Seg)
Card(Ref)+Card(Seg)

2
P

i min(Ref(i),Seg(i))P
i Ref(i)+

P
i Seg(i)

Sensitivity
(SEN)

Card(Ref×Seg)
Card(Ref)

P
i min(Ref(i),Seg(i))P

i Ref(i)

Specificity
(SPE)

Card(Ref×Seg)

Card(Ref)

P
i min(1−Ref(i),1−Seg(i))P

i(1−Ref(i))

3.2. Segmentation comparison results

The segmentation method has been validated using the Brain-
Web1 simulated images. Sequences (Noise: 3%, Intensity
non-uniformity: 20%, slice thickness: 1mm) have been
generated using the moderate MS lesions brain anatomi-
cal model. From this first ground truth, we also generate
images with a slice thickness of 3 mm that are considered as
ground truth repartition maps. We evaluate our method with
images generated by BrainWeb with slice thicknesses of both
1 and 3 mm. The results of this evaluation are given in table
2.

Table 2. Segmentations comparison results for Brainweb MS
anatomical model.

Slide Tissues SI SEN SPE
thickness
MS 1mm CSF 0.81 0.79 0.99
MS 1mm Brain 0.98 0.98 0.99
MS 3mm CSF 0.82 0.81 0.99
MS 3mm Brain 0.95 0.98 0.97

The obtained results yield correct segmentations (SI >
0.8). The sensibility values are correct (SEN > 0.79) even
if they seem to indicate a slight under segmentation. The
specificity values (SPE > 0.97) indicate that there are few
false positive voxels. The CSF results are slightly weaker than
Brain (GM+WM) results. This can be explained by the fact
that CSF compartment compared to GM or WM represents
the smallest volume. This explains that any misclassified vox-
els will introduce a larger relative error to the CSF classifica-
tion rather than to the Brain (GM+WM) classification.

3.3. Volume measurements validation

Table 3 gives the relative error in CSF and brain volume mea-
surements. GM and WM volume estimation errors are quite
important but the error on the brain volume is acceptable.
Moreover we have a good estimation of the CSF volume. The

1http://www.bic.mni.mcgill.ca/brainweb/

Table 3. Obtained relative volume errors
CSF GM WM Brain

MS 1mm -4 % +9 % -11 % +1 %
MS 3mm -5 % +16 % -9 % +5 %

average CSF volume error is equal to 4.5% where the CSF
volume is the smallest compared to the others.

3.4. Atrophy measurements validation

Fig. 1. Measured atrophy vs simulated atrophy, with respect
to the initial timepoint T0.

A simulation of normal aging atrophy which uses Brain-
Web images has been proposed in [15]. We use this simula-
tion to validate our global atrophy measurement which is ob-
tained by the difference of the BPF between two timepoints.
Figure 1 shows the measured atrophy versus the simulated at-
rophy for our method with and without modification for lon-
gitudinal study and for SIENA, that has been used with its
default parameters.
We can observe that our method without modification

for longitudinal studies yield incorrect results. Our method
with longitudinal study modifications underestimates atro-
phy while SIENA overestimates it (a perfect measure will
yield a slope equal to one), our measures being closest to
the simulated atrophy. Both methods exhibit a good corre-
lation with the simulated atrophy, ours being a little higher
(R2 = 0.99, p < 0.05). It should also be noticed that the lin-
ear approximation resulting from our measures goes through
the origin (the point (0, 0)), which is expected, while SIENA
does not. This could suggest a slight superiority of our
method with respect to SIENA, but this has to be confirmed
with further experiments.
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4. CONCLUSION AND FUTUREWORK

The proposed method allows to obtain repartition maps of the
different brain compartments. From these repartition maps,
which give the proportion of the different compartments in
each voxel, the volume of CSF and of the brain (GM+WM)
can be computed. These volume evaluations are robust to
artefacts like PVE and MS lesions in the images thanks to the
inclusion of PVE classes and of an outlier class in the clas-
sification process. From these, a BPF can be computed. In
the case of longitudinal study, the difference of the two ob-
tained BPF give an atrophy value which has been shown to
be strongly correlated to the real brain atrophy (on simulated
data). In this case, the BPF was not less precise than SIENA.
Because of the lack of simulated images with MS brain

atrophy, the next step will consist comparison of the atrophy
measurements of our method against other methods on real
MS patient MR images. To that end, we are currently collect-
ing MR images from a multi-center study. For the moment,
we do not have enough patients with several acquisitions to
present statistically significant results. Preliminary results on
a few patients are promising. Obtained segmentations were
qualitatively validated by experts and the obtained volumes
and atrophy measurements are in accordance with the litera-
ture [3].
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